Construction and enhancement of a minimal genetic and logic gate.
نویسندگان
چکیده
The ability of genetic networks to integrate multiple inputs in the generation of cellular responses is critical for the adaptation of cellular phenotype to distinct environments and of great interest in the construction of complex artificial circuits. To develop artificial genetic circuits that can integrate intercellular signaling molecules and commonly used inducing agents, we have constructed an artificial genetic AND gate based on the P(luxI) quorum-sensing promoter and the lac repressor. The hybrid promoter exhibited reduced basal and induced expression levels but increased expression capacity, generating clear logical responses that could be described using a simple mathematical model. The model also predicted that the AND gate's logic could be improved by altering the properties of the LuxR transcriptional activator and, in particular, by increasing its rate of transcriptional activation. Following these predictions, we were able to improve the AND gate's logic by approximately 1.5-fold using a LuxR mutant library generated by directed evolution, providing the first example of the use of mutant transcriptional activators to improve the logic of a complex regulatory circuit. In addition, detailed characterizations of the AND gate's responses shed light on how LuxR, LacI, and RNA polymerase interact to activate gene expression.
منابع مشابه
Optimization of Quantum Cellular Automata Circuits by Genetic Algorithm
Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...
متن کاملUltra Low Power Symmetric Pass Gate Adiabatic Logic with CNTFET for Secure IoT Applications
With the advent and development of the Internet of Things, new needs arose and more attention was paid to these needs. These needs include: low power consumption, low area consumption, low supply voltage, higher security and so on. Many solutions have been proposed to improve each one of these needs. In this paper, we try to reduce the power consumption and enhance the security by using SPGAL, ...
متن کاملA Novel Design of Quaternary Inverter Gate Based on GNRFET
This paper presents a novel design of quaternary logic gates using graphene nanoribbon field effect transistors (GNRFETs). GNRFETs are the alternative devices for digital circuit design due to their superior carrier-transport properties and potential for large-scale processing. In addition, Multiple-valued logic (MVL) is a promising alternative to the conventional binary logic design. Sa...
متن کاملHigh-Speed Penternary Inverter Gate Using GNRFET
This paper introduces a new design of penternary inverter gate based on graphene nanoribbon field effect transistor (GNRFET). The penternary logic is one of Multiple-valued logic (MVL) circuits which are the best substitute for binary logic because of its low power-delay product (PDP) resulting from reduced complexity of interconnects and chip area. GNRFET is preferred over Si-MOSFET for circui...
متن کاملEfficient Delay Characterization Method to Obtain the Output Waveform of Logic Gates Considering Glitches
Accurate delay calculation of circuit gates is very important in timing analysis of digital circuits. Waveform shapes on the input ports of logic gates should be considered, in the characterization phase of delay calculation, to obtain accurate gate delay values. Glitches and their temporal effect on circuit gate delays should be taken into account for this purpose. However, the explosive numbe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 75 3 شماره
صفحات -
تاریخ انتشار 2009